Improved linear classifier model with Nyström

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IMPROVED ESTIMATOR OF THE VARIANCE IN THE LINEAR MODEL

The improved estimator of the variance in the general linear model is presented under an asymmetric linex loss function.

متن کامل

Reduced Heteroscedasticity Linear Regression for Nyström Approximation

The Nyström method is a well known sampling based low-rank matrix approximation approach. It is usually considered to be originated from the numerical treatment of integral equations and eigendecomposition of matrices. In this paper, we present a novel point of view for the Nyström approximation. We show that theoretically the Nyström method can be regraded as a set of pointwise ordinary least ...

متن کامل

An Improved Oscillating-Error Classifier with Branching

This paper extends the earlier work on an oscillating error correction technique. Specifically, it extends the design to include further corrections, by adding new layers to the classifier through a branching method. This technique is still consistent with earlier work and also neural networks in general. With this extended design, the classifier can now achieve the high levels of accuracy repo...

متن کامل

improved estimator of the variance in the linear model

the improved estimator of the variance in the general linear model is presented under an asymmetric linex loss function.

متن کامل

Hashing with Generalized Nyström Approximation

Hashing, which involves learning binary codes to embed high-dimensional data into a similarity-preserving low-dimensional Hamming space, is often formulated as linear dimensionality reduction followed by binary quantization. Linear dimensionality reduction, based on maximum variance formulation, requires leading eigenvectors of data covariance or graph Laplacian matrix. Computing leading singul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2018

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0206798